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Abstract 

Background Emotions often play a role in neurofeedback (NF) regulation strategies. However, investigations of the 
relationship between the induced neuronal changes and improvements in affective domains are scarce in electroen-
cephalography-based studies. Thus, we extended the findings of the first study on slow cortical potential (SCP) NF in 
autism spectrum disorder (ASD) by linking affective changes to whole-brain activity during rest and regulation.

Methods Forty-one male adolescents with ASD were scanned twice at rest using functional magnetic resonance 
imaging. Between scans, half underwent NF training, whereas the other half received treatment as usual. Furthermore, 
parents reported on their child’s affective characteristics at each measurement. The NF group had to alternatingly 
produce negative and positive SCP shifts during training and was additionally scanned using functional magnetic 
resonance imaging while applying their developed regulation strategies.

Results No significant treatment group-by-time interactions in affective or resting-state measures were found. How-
ever, we found increases of resting activity in the anterior cingulate cortex and right inferior temporal gyrus as well as 
improvements in affective characteristics over both groups. Activation corresponding to SCP differentiation in these 
regions correlated with the affective improvements. A further correlation was found for Rolandic operculum activa-
tion corresponding to positive SCP shifts. There were no significant correlations with the respective achieved SCP 
regulation during NF training.

Conclusion SCP NF in ASD did not lead to superior improvements in neuronal or affective functioning compared to 
treatment as usual. However, the affective changes might be related to the individual strategies and their correspond-
ing activation patterns as indicated by significant correlations on the whole-brain level.

Trial registration This clinical trial was registered at drks.de (DRKS00012339) on 20th April, 2017.
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Background
Autism spectrum disorder (ASD) constitutes a pervasive 
neurodevelopmental disorder which onsets during child-
hood and comprises deficits in communication and inter-
action abilities as well as atypical, repetitive behavior [1]. 
A variety of therapeutic approaches exists, each focusing 
on different symptoms [2, 3].

A particular family of treatment approaches based 
on a system- and network-level understanding of ASD 
includes the application of non-invasive neuromodula-
tion techniques [4]. Among these, transcranial direct cur-
rent [5–7] and magnetic stimulation [8–10] have been 
more widely explored in the past. In contrast, neurofeed-
back (NF) is a neuromodulatory intervention without 
external stimulation.

Patients undergoing NF, train their voluntary control 
over certain characteristics of their brain activity. While 
reviews on the application of electroencephalography-
based (EEG) NF for the treatment of attention-deficit/
hyperactivity disorder (ADHD) have yielded mixed 
results [11, 12], there is a specific recommendation for 
slow cortical potentials (SCPs) NF [13].

SCP NF has been successfully applied for the treat-
ment of ADHD in children [14–16], adolescents [17] and 
adults [18]. These very slow EEG fluctuations (typically 
below 1 Hz) are related to the excitability threshold of the 
upper cortical layers, where SCP negativity corresponds 
to increased cortical excitability and SCP positivity to 
decreased cortical excitability [19]. However, the utility of 
NF for the treatment of ASD in general has been ques-
tioned [24].

This criticism is based on the high comorbidity of ASD 
with ADHD with estimates ranging from 37 to 85% [25] 
rendering it difficult to assign symptom improvements 
to either of the disorders separately. However, previous 
research using EEG NF in ADHD and ASD often focused 
on attention deficits [11, 26] while studies on the emo-
tional and empathic components are largely missing. 
The recently conducted first study on SCP NF in ASD 
reported positive effects on ASD-specific symptomatol-
ogy [27], but also showed the complex influence of the 
ADHD-related problems regarding attention, hyperac-
tivity and impulsivity [28]. Overall, transdiagnostic simi-
larities between ASD and ADHD encompass deficits in 
emotion regulation, emotion recognition, attention, cog-
nitive flexibility, inhibition, reward processing, working 
memory, organization and planning [29, 30]. Different 
severity patterns of emotion recognition and regulation 
impairments between children and adolescents with 
and without ASD and/or ADHD have also been found 
[31–33]. In regards to empathic capabilities, individuals 
with ASD showed deficits in cognitive empathy, but not 
in affective empathy [35, 36]. Despite emotion regulation 

research in ASD still being in its infancy, the importance 
and efficacy of therapeutic approaches incorporating 
emotion regulation training for ASD are already evident 
[38, 39].

On a neuronal level, investigations via resting-state 
(RS) functional magnetic resonance imaging (fMRI) 
revealed lower average absolute global connectivity in 
children and adolescents with ASD compared to typi-
cally developing controls [42]. A meta-analysis on dif-
ferences in resting activity between individuals with 
and without ASD quantified via regional homogeneity 
(ReHo; a measure sensitive to brain activity and local 
connectivity), amplitude of low-frequency fluctuations 
(ALFF; activity within a certain frequency band) and 
cerebral blood flow, reported robust over-activation 
in language-related and motor areas as well as under-
activation in the default mode network [43].  A large-
scale, multi-center study reported a  cluster reaching 
from the left posterior insula to the operculum show-
ing decreases in voxel-matched homotopic connectiv-
ity (i.e., symmetric connectivity), ReHo and degree 
centrality (a measure of global connectedness) [44]. A 
second cluster was located in the right dorsal superior 
frontal cortex and showed increases in fractional ALFF 
(fALFF; an amplitude-normalized version of ALFF), 
ReHo and degree centrality [44].

Even though SCPs are a common NF target and fur-
ther constitute suspected contributors to the blood-
oxygenation-level-dependent (BOLD) signal [20, 21], 
only few studies investigated the neural processes 
accompanying SCP self-regulation using fMRI. Hinter-
berger, Veit [45] showed that during transfer runs 
(training runs without feedback for decoupling regula-
tion success from the feedback procedure) SCP nega-
tivity is related to wide-spread activation in fMRI. In 
turn, SCP positivity was associated with widespread 
deactivation.

We investigated potential treatment-induced changes 
in several affective characteristics on a subjective level 
via parental questionnaires to gain further knowledge 
on emotion regulation in ASD. Neuronal outcome meas-
ures at rest were assessed using three models previously 
related to alterations in brain connectivity and activ-
ity of individuals with ASD [42–44]. First, the percent 
amplitude of fluctuation (PerAF) model was used for 
assessing resting brain activity [47], constituting a less 
artifact-prone and easier to interpret derivative of (f )
ALFF [43, 44]. Second, average brain-wide connectiv-
ity was assessed via global functional connectivity (GFC; 
[48]), a continuous and thus more sensitive alternative to 
degree centrality [44]. Third, ReHo [49, 50] was assessed 
as measure of local activity and connectivity [43, 44], 
placing itself conceptually between PerAF and GFC. 
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Finally, we conducted a brain regulation task in the MRI 
scanner, based on suggested links between SCPs and the 
BOLD signal [21, 45], in which the participants had to 
apply the regulation strategies learned, and investigated 
potential relationships between whole-brain activation 
corresponding to SCP regulation and affective changes.

Methods
Experimental design
Participants were randomly allocated to either 24 ses-
sions of SCP NF or treatment as usual  (TAU). SCP 
feedback was calculated from the fronto-central elec-
trode located according to the extended 10–20 EEG 
system and presented on a screen as graphical object of 
the participants’ choice. The participants’ goal was to 
gain volitional control over their brain activity. This was 
visualized by moving the object up or down via changes 
in SCP positivity or negativity. For details on the NF 
training protocol, EEG artifact correction, feedback 
presentation, etc. see Konicar, Radev [27]. In order to 
assess neuronal and subjective changes, fMRI and psy-
chometric data were acquired before the first and after 
the last treatment session in both groups.

Participants
Potential male adolescent (12–17  years) participants 
with a diagnosis of ASD (according to the German 
version of the Autism Diagnostic Interview—Revised 
(ADI-R) [51] and/or the Autism Diagnostic Observa-
tion Schedule, version 2 (ADOS-2) [52] were recruited 
and invited to a screening. The subsequent inclusion 
criteria were right-handedness and an IQ above 70 (if 
no previous IQ was available, an age-adequate test was 
administered as part of the screening process) [53, 54]. 
The recruitment was restricted to male adolescents 
due to the prevalence of ASD in this population. Par-
ticipants were excluded in case of relevant psychiat-
ric, neurological or internal conditions (head injuries, 
major axis I diagnosis of psychosis, obsessive–com-
pulsive disorder, severe motor or vocal tics, Tourette 
syndrome, severe depression with suicidality) or MRI 
contraindications. Previous NF experience and cur-
rent participation in pharmacological studies were not 
allowed. Concomitant psychosocial and pharmacologi-
cal treatments were permitted if kept constant through-
out study participation.

Psychometric assessment
We used the Emotion Regulation Checklist (ERC [55]) 
and the Griffith Empathy Measure (GEM [56]) to 
gather parental reports of the participants’ development 

regarding their affective and empathic abilities. The 
Emotion Regulation (ER) and Lability/Negativity (LN) 
subscales of the ERC were analyzed separately, with the 
former quantifying expression and self-awareness of 
emotions as well as empathy, and the latter mood lability 
and anger dysregulation. We concentrated on the Cogni-
tive Empathy (CE) subscale of the GEM, since this ability 
was shown to be diminished in adolescents with ASD in 
contrast to affective empathy [35].

Since the frequent co-occurrence of ADHD constitutes 
the major point of discussion in the application of NF to 
patients with ASD, the “Diagnostic System for Psychiatric 
Disease in Children and Adolescent, parent-rated version 
2” for ADHD (DISYPS-II [57]) was used to quantify the 
respective characteristics (henceforth “ADHD score”). 
The ADHD score was calculated, age-corrected and 
transformed to the “standard nine” (stanine) score.

FMRI acquisitions
We positioned the participants in the MRI scanner and 
fixated their heads using foam cushions. Eight minutes 
of RS data was acquired as the first functional scan to 
avoid potential task-related carryover effects. The partici-
pants were instructed to lie with their eyes open, look at a 
crosshair, let their mind wander and not to think of any-
thing in particular.

In the SCP neurofeedback group only, after completing 
the training, a short brain regulation task was recorded 
in 2 min 42 s. This was done in order to investigate acti-
vation corresponding to the application of the SCP 
regulation strategies on a whole-brain level. The visual 
cues matched the SCP transfer run. Participants were 
instructed to apply their regulation strategies: A triangle 
pointing upwards (“Up” condition) indicated application 
of the strategy developed to induce negative SCP shifts 
and a triangle pointing downwards (“Down” condition) 
indicated application of the strategy developed to pro-
duce positive SCP shifts. The conditions were presented 
5 times each for 8 s in a pseudo-randomized order inter-
leaved with baselines of the same duration. Since the 
baseline in the SCP transfer run was only 2  s long and 
had no visual indicator, we added a crosshair of the same 
size and color scheme as the triangles for the fMRI run. 
There was no indication of the currently achieved regula-
tion and, contrary to the SCP transfer run, no reward was 
given after regulation trials.

Measurements were performed on a Siemens Mag-
netom Prisma 3  T machine (Siemens, Erlangen, Ger-
many) with the same sequence as in Moessnang, Schäfer 
[58] due to the previous successful application in a com-
parable population: echo/repetition time = 30/2000  ms, 
3  mm isotropic resolution (+ 25% gap), 33 slices with 
64 × 64 voxels (field of view = 192 × 192 × 123  mm), 
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bandwidth = 2365 Hz/Px. Prospective acquisition correc-
tion (PACE) was used for online motion correction.

FMRI preprocessing
Unless mentioned otherwise, preprocessing was con-
ducted using Statistical Parametric Mapping, version 
12 (SPM12). In a combined first step, physiological arti-
facts were reduced using PESTICA [59] and slice-wise 
motion correction was performed with SLOMOCO [60]. 
This advanced motion correction approach was chosen 
as adolescents show markedly more in-scanner motion 
than adults. Slice-timing was corrected to the temporally 
middle slice. Each paradigm’s acquisitions were realigned 
together for each participant. A population-specific nor-
malization template was created using the CerebroMatic 
toolbox [61] with spatially adaptive non-local means 
and hidden Markov random field filtering for increased 
homogeneity over the whole age range. Affine regulariza-
tion was performed to the standard ICBM template for 
European brains with parameters downscaled by a factor 
10 for better local fitting, as some brains showed unrea-
sonable inflation without regularization. Thus, tissue dis-
tributions were age-adjusted but the localization of the 
regions were approximately in standard space. The origi-
nal voxel size was used for reslicing [62]. The BrainWave-
let toolbox [63] was employed for non-linear artifact 
correction providing additional mitigation of motion and 
other types of artifacts. The “threshold” parameter was 
set to “15” due to the application to unsmoothed data and 
“chsearch” to “harsh” to be more sensitive towards slow 
artifacts. The data was finally smoothed with a Gauss-
ian kernel with full width at half maximum (FWHM) of 
3 times the voxel size.

FMRI modelling
An adapted CompCor approach [64, 65] and the Fris-
tion-24 model [66] were utilized for reduction of any 
residual physiological or movement-related artifacts 
in the brain regulation task and RS data. The latter was 
further band-limited to 0.01–0.10  Hz using frequency 
regressors [67]. Based on the filtered RS time series, three 
voxelwise models were set up: PerAF to quantify brain 
activity, GFC for brain-wide connectivity and ReHo for 
local activity and connectivity. Since the calculation of 
ReHo leads to spatial smoothing, this model was applied 
to the unsmoothed and filtered data. Afterwards, the 
ReHo maps were smoothed with a FWHM of 2 times the 
voxel size achieving smoothness similar to PerAF and 
GFC. Finally, ReHo and GFC were Fisher z-transformed 
before group analysis.

The brain regulation task was modeled using the 1st-
level module in SPM12. The conditions (“Up”/“Down”) 

were used as regressors. The CompCor and Fris-
ton-24 time series were set as nuisance signals. In addi-
tion, the equivalent of SCP differentiation between 
changes in negativity and positivity was calculated as 
the difference between the “Up” and “Down” conditions 
(henceforth “fMRI differentiation”). The autocorrelation 
model was set to “FAST” [68].

Statistical inference
Questionnaire data was analyzed using linear mixed 
effects models (LMEs). Interactions between “treat-
ment group”, “time” (factors) and “ADHD baseline score” 
(covariate) were analyzed and dropped if non-signifi-
cant. The LMEs also included participants as random 
intercepts.

Whole-brain inference was conducted using the 2nd-
level module in SPM12. “Treatment group”-by- “time” 
and “time” effects were analyzed in one model per RS 
measure. Contrasts for within-group effects were further 
estimated in case of non-significant interactions. Correla-
tions of regulation direction-specific activation and fMRI 
differentiation with the ERC and GEM score changes 
were of interest for the brain regulation task. Family-wise 
error-corrected results are reported at the cluster- (pri-
mary threshold p ≤ 0.001) or peak-level. Influences of 
ADHD were controlled for with the pre-training ADHD 
scores as covariate.

Associations between the RS findings and question-
naire score changes over time were investigated on an 
exploratory basis using partial correlation (Pearson or 
Spearman, depending on a visual check of the distribu-
tions, corrected for treatment group; median cluster val-
ues were extracted using the MarsBaR toolbox 0.44).

In case of significant correlations between activa-
tion in the brain regulation task and questionnaire score 
changes, the latter were subsequently correlated with 
the average amount of SCP regulation corresponding 
to the activation contrast achieved during the third and 
last quarter (six days each) of NF training. These periods 
showed the strongest regulation or were closest to the 
second MRI session [27]. This way, we checked whether 
NF training success was related to score changes (c.f., 
Heinrich, Gevensleben [69]).

All tests (including neuroimaging models [70]) were 
two-sided and multiplicity-corrected to p ≤ 0.05. To cor-
rect for the number of questionnaire scales/RS mod-
els/brain regulation task correlations, we employed an 
in-house developed algorithm based on the depend-
ency-adjusted D/AP approach [71] (see supplement for 
implementation).
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Results
Participants
Out of 94 adolescents who were interested in partici-
pating in the study, 53 could not be enrolled (21 due to 
personal reasons, eleven due to neurological reasons or 
sub-threshold IQ, nine due to MRI contraindications, six 
were out of the target age range, six were left-handed). 
This resulted in a sample of 41 adolescents with an ASD 
diagnosis of which 21 were randomized into the SCP NF 
and 20 into the TAU group. Complete RS data and brain 

regulation task data was available for 36 and 20 partici-
pants respectively (three participants did not participate 
in the second session for personal reasons, two had to be 
excluded due to compromised data quality and one due 
to missing compliance). Baseline data of our sample is 
provided in Table  1, longitudinal data and comparisons 
are provided in Table 2.

  
The results of the SCP regulation training, ASD 

core symptoms longitudinally quantified via the Social 

Table 1 Baseline characteristics

Unless otherwise specified, scores are given as mean ± standard deviation

WISC/WAIS: Wechsler Intelligence Scale for Children/Wechsler Adult Intelligence Scale, ADI-R: Autism Diagnostic Interview—Revised, SRS: Social Responsiveness Scale, 
SCQ: Social Communication Questionnaire, ASD: Autism Spectrum Disorder, DISYPS-II: Diagnostic Dystem for Psychiatric Disease in Children and Adolescent, parent-
rated version 2, ADHD: attention-deficit/hyperactivity disorder
1  At first magnetic resonance imaging session
2  WISC/WAIS IQs were available for 11 participants in the neurofeedback and 14 in the treatment as usual group. Two participants in the neurofeedback group had an 
IQ of 96 and 120, respectively, assessed via the Adaptive Intelligence Diagnostic, version 2
3  Only one participant in the treatment as usual group was rated “slightly above average”, none below
4  Available for 12 participants in the neurofeedback and ten participants in the treatment as usual group
5  Clinical observer assessment; no “deficits in language”-only subtype was observed in any group
6  Combines the “attention deficits”, “hyperactivity” and “impulsivity” subscales

Score Neurofeedback Treatment as usual

N 21 20

Age1 [years] 14.44 ± 1.90 15.01 ± 1.59

IQ: WISC/WAIS2 100.82 ± 17.34 101.57 ± 14.14

IQ:  qualitative3 [median] average average

ADI-R4: social interaction 12.25 ± 4.90 17.00 ± 7.73

ADI-R4: communication and language 10.08 ± 6.17 13.65 ± 5.40

ADI-R4: restricted and repetitive behavior 3.67 ± 2.71 3.75 ± 1.23

SRS: total 99.57 ± 26.10 89.50 ± 25.94

SRS: social awareness 12.57 ± 3.22 11.45 ± 4.01

SRS: social cognition 18.38 ± 4.90 15.50 ± 6.01

SRS: social communication 34.95 ± 11.14 30.70 ± 9.32

SRS: social motivation 15.86 ± 5.92 16.25 ± 5.18

SRS: autistic mannerism 17.81 ± 6.59 15.60 ± 6.29

SCQ: total 18.62 ± 7.26 15.10 ± 6.88

SCQ: social interaction 7.05 ± 4.02 5.60 ± 3.76

SCQ: communication 6.86 ± 2.57 6.10 ± 3.09

SCQ: stereotyped behavior 4.52 ± 2.42 3.10 ± 2.47

ASD subtype: deficits in social  interaction5 [n] 5 6

ASD subtype: repetitive behavior and  interests5 [n] 1 2

ASD subtype: deficits in social interaction + repetitive behavior and  interests5 [n] 12 10

ASD subtype: deficits in social interaction + deficits in  language5 [n] 1 1

ASD subtype: deficits in social interaction + deficit in language + repetitive behavior and 
 interests5 [n]

2 1

DISYPS-II: ADHD  total6 [standard nine] 7.5 ± 0.98 7.10 ± 1.17

DISYPS-II: attention deficits [standard nine] 7.33 ± 1.29 7.20 ± 1.15

DISYPS-II: hyperactivity [standard nine] 6.38 ± 1.77 5.55 ± 2.98

DISYPS-II: impulsivity [standard nine] 7.76 ± 1.09 5.90 ± 3.65

DISYPS-II: competences [standard nine] 3.90 ± 1.55 3.20 ± 1.91
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Responsiveness Scale [72] and further information on 
the exact training protocol are provided in Konicar, 
Radev [27]. A detailed analysis of the comorbid ADHD 
symptoms and their influence on attention and expec-
tancy measured via the contingent negative variation 
(CNV) in the EEG signal is presented in Prillinger, 
Radev [28].

Psychometric and behavioral analysis
No significant interaction effects were found for any psy-
chometric scale. The ER subscale (higher is better) of the 
ERC showed a significant improvement of symptoms 
over both groups, whereas the LN (lower is better) and 
GEM CE (higher is better) subscales barely fell short of 
statistical significance. The LN subscale positively corre-
lated with the pre-training ADHD score.

Since the PerAF results indicated a potential relation-
ship with in-scanner movement, the mean of the total 
displacement output of the SLOMOCO step of RS pre-
processing was additionally analyzed via LME to uncover 
potential further relationships with psychopathology. 
There was a significant time by group interaction where 
the SCP NF group showed significantly higher pre-train-
ing movement. Total displacement did not correlate with 
the ADHD score over both scans (Spearman ρ = − 0.05, 
p = 0.6790). No multiplicity correction was applied in the 
total displacement analysis.

Resting‑state models
Over both groups, an increase in RS activity was found in 
the ventral anterior cingulate cortex (ACC). Within the 
TAU group, a further increase was detected in the right 
precentral gyrus. Another cluster of increased resting 
activity over both groups stretching into the medial and 
inferior temporal gyrus (ITG) did not survive correction 

for the number of models. Upon visual inspection (see 
Fig.  1), the result in the precentral gyrus might be par-
ticularly biased by baseline differences. LMEs of the 
median values extracted from the clusters were run 
(treatment group, time and their interaction as factors, 
the ADHD score as covariate, random intercept per par-
ticipant). These confirmed the time effect for the ACC 
(p = 0.0006) and temporal gyrus (p = 5.4E-6) and indi-
cated a baseline difference (p = 0.0326), time (p = 3.5E-5) 
and interaction effects (p = 0.0020; all uncorrected) for 
the precentral gyrus. The ADHD score had no significant 
influence in either model. Details are presented in the 
upper section of Table 3 and left column of Fig. 1.

Since precentral gyrus activation might be indicative of 
movement, the PerAF values of each region were Pearson 
partially correlated (corrected for measurement, treat-
ment group and their interaction) with the mean total 
displacement (thresholded at 1.5  times the interquartile 
range due to potential outliers) and the pre- and post-
training ADHD scores on an exploratory basis. Indeed, 
significant relationships with total displacement were 
found for all results (r = [0.24, 0.49], p = [0.0479, 1.6E-
5]; all p-values for the ADHD score > 0.45). The thresh-
olded mean total displacement values were then used 
as additional covariate in a repeated analysis. All results 
survived this control for in-scanner movement with one 
further cluster for the TAU group in the triangular gyrus 
(not significant after multiplicity adjustment; see Addi-
tional file 1: Table S3, upper section). Given the homoge-
neous effect on all investigated regions, the influence of 
total displacement was also investigated on a whole-brain 
level, resulting in weak but widespread patterns of corre-
lations and anti-correlations (Additional file 1: Figure S3).

Exploratory analyses revealed correlations between 
changes in the LN subscale and the middle/ITG cluster 

Table 2 Changes in emotion regulation, empathy and in-scanner movement

Pre- and post-treatment scores are given as mean ± standard deviation. ADHD: attention-deficit/hyperactivity disorder. Tests were conducted with linear mixed effects 
models

Score Neurofeedback pre Neurofeedback post Treatment as usual pre Treatment as usual post p‑value

N 21 scores: 21
resting-state: 19
brain regulation task: 20

20 Scores: 20
Resting-state: 17

Emotion Regulation 
Checklist: Emotion Regu-
lation

21.19 ± 3.98 23.05 ± 3.23 20.45 ± 5.00 21.15 ± 3.59 Time: 0.0419

Emotion Regulation 
Checklist: Lability/Nega-
tivity

33.71 ± 5.83 30.76 ± 5.34 32.00 ± 7.06 31.65 ± 6.43 Time: 0.0506
ADHD score: 0.0014

Griffith Empathy Measure: 
Cognitive Empathy

-1.00 ± 9.85 5.33 ± 9.80 0.60 ± 9.20 1.20 ± 8.89 Time: 0.0601

Mean total displacement 2.49 ± 0.88 2.12 ± 0.46 2.01 ± 0.41 2.16 ± 0.42 Interaction: 0.0024
Group: 0.0145



Page 7 of 14Klöbl et al. Child and Adolescent Psychiatry and Mental Health            (2023) 17:6  

from both groups (Spearman  ρ = 0.41, p = 0.0133). The 
GFC and ReHo models yielded no significant effects.

Brain regulation task
During the “Up” and “Down” conditions (correspond-
ing to the induction of negative and positive SCP shifts, 
respectively), primary and secondary visual areas 
were activated. No significant difference was found 
between the two conditions (i.e., no significant fMRI 

differentiation). Rolandic operculum activation (stretch-
ing into the anterior insula and the Heschl gyrus) dur-
ing the “Down” condition significantly correlated with 
increases in ER after training. FMRI differentiation in the 
ITG showed a significant correlation with changes in CE. 
A further cluster barely missing corrected significance 
was detected for the correlation of higher fMRI differen-
tiation in the ventral ACC and improvements in LN. The 
baseline ADHD score had no significant influence on any 

Fig. 1 Results of the resting brain activity and brain regulation task analyses. The increase in the percent amplitude of fluctuations (PerAF) of 
the anterior cingulate cortex over both, the slow cortical potentials (SCP) neurofeedback and treatment as usual (TAU) group, is visualized in 
the top-left diagram. The middle-left diagram shows a PerAF increase in the precentral gyrus of the TAU and generally higher values in the SCP 
group. The bottom-left plot shows the PerAF changes over both groups in the temporal gyrus with stronger increases in the TAU group. The right 
scatter plots show the correlation of the brain regulation task (Pearson’s r corresponding to the parametric analysis as implemented in Statistical 
Parametric Mapping and Spearman’s due to potential outliers): The difference between the “Up” and “Down” conditions (i.e., fMRI differentiation) 
was anticorrelated with changes on the Lability/Negativity (ERC ΔLN) subscale of the Emotion Regulation Checklist. The SCP positivity condition 
correlated with changes on the Emotion Regulation (ERC ΔER) subscale. Changes on the Griffith Empathy Measure Cognitive Empathy (GEM ΔCE) 
subscale again significantly correlated with fMRI differentiation. The whole-brain 3D models were created using BrainNet Viewer 1.7 [73]
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model. For details, see the lower section of Table 3 and 
right column of Fig. 1.

The only notable correlation with SCP shift amplitudes 
was found for the change in CE and the average differen-
tiation achieved during the last quarter of the NF train-
ing (Spearman: ρ = 0.35, p = 0.1184; all other |ρ| < 0.15, 
p > 0.53) but was not significant.

Discussion
In this work, we used fMRI to assess the resting brain 
activity of adolescents with ASD and parental reports of 
their affective functioning before and after receiving SCP 
NF or TAU. In addition, the SCP NF group performed an 
in-scanner brain regulation task where the participants 
had to apply their regulation strategies after undergoing 
NF training. Using the whole-brain regulation data, we 
found relationships between the activation during regula-
tion and improvements in different affective domains.

Affective symptom improvements and the potential 
influence of regulation strategies
Changes in resting activity and affective improvements 
over both groups without any interaction effects indi-
cate unspecific positive effects of SCP NF and TAU. Fur-
thermore, while localized correlations between brain 
activation during regulation and improvements on all 
investigated affective scales point towards an influence 
of NF, these improvements did not significantly cor-
relate with SCP regulation measure used (i.e., the SCP 
shifts produced in the same direction for which the cor-
relations with fMRI activation were detected). Heinrich, 
Gevensleben [69] likewise concluded universal improve-
ments of emotional and behavioral self-regulation after 
successfully applying SCP NF in ADHD without finding 
correlations of training outcomes and symptom improve-
ments. A possible interpretation of these findings may 
ascribe the affective improvements not to the achieved 
SCP regulation but to the application of regulation strat-
egies. The correlation between fMRI differentiation and 
activation during the “Down” condition with affective 
improvements could indeed point towards highly indi-
vidual activation patterns and strategies. In line with this 
speculation, Hasslinger, D’Agostini Souto [74] identified 
emotional strategies as one class of common regula-
tion approaches in SCP NF when treating ADHD. Using 
the same classifications, strategies from the emotional 
domain were also frequently reported in this study (see 
supplement of [27]). Furthermore, ER is known to often 
be a key factor in the development of successful regu-
lation strategies [75, 76]. It, however, should be noted 
that any comparison to NF training outcomes strongly 
depends on the definition of learning and the quantifica-
tion of the regulation success.

The support of the experimenters needs consideration 
in regards to the origin of the correlation between fMRI 
differentiation in the right ITG and improvements in CE. 
Empathic comments after negative performance feed-
back were shown to decrease negative feelings [77]. The 
participants might have unintentionally related verbal 
positive reinforcement to their regulation strategies ulti-
mately resulting in CE improvements. In a comparable 
scenario, the experimenters’ empathy was concluded to 
be a potential driving factor of subjective improvements 
in the sham group of a NF study in primary insomnia 
[78]. While the weaker correlation of the “Up” condition 
alone appears to support this hypothesis, the stronger 
effect for the fMRI differentiation is probably the best 
argument against such an additional unintentional effect.

In addition, the TAU group might have improved due 
to the supportive clinical counseling received, leading 
to no significant therapeutic advantage of SCP NF. The 
positive correlation between the LN subscale and the 
ADHD baseline score corroborates the well-documented 
emotion dysregulation in ADHD [79–81]. The stronger 
reduction of in-scanner head movement (total displace-
ment) in the SCP group might result from the require-
ment to sit still for a longer time over repeated NF 
sessions.

The anterior cingulate cortex and emotional negativity
Similar to improvements on the psychometric level, we 
found an increase in ACC resting activity quantified 
as PerAF over both groups. Smaller gray matter vol-
ume (potentially presenting as decreased resting activ-
ity after structural normalization) as well as decreased 
metabolic rate in the ACC of individuals with ASD have 
been reported [82, 83]. A lack of activation in the ACC 
was also found for a stroop task in ADHD and related to 
the symptoms of inattention and impulsivity [85], which 
are likely shared between ADHD and ASD [86]. The 
increased ACC resting activity could thus constitute a 
treatment-induced compensatory effect.

Beyond changes in PerAF, the ventral part of the ACC 
also showed a negative correlation between fMRI differ-
entiation and the change in the LN subscale of the ERC 
extending into the medial prefrontal cortex. The ACC is 
known to be related to repetitive behavior in ASD [87] 
but also to cognitive inflexibility in depression [88, 89]. 
The latter is potentially also represented in the LN sub-
scale [90], providing further evidence that behavioral 
flexibility might be reflected in neuronal flexibility of the 
ACC.

The inferior temporal gyrus and cognitive empathy
General as well as regionally specific alterations in tem-
poral lobe structures related to ASD are well known [91, 
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92]. Smaller gray matter volume of the right ITG was 
previously related to a higher probability of an ASD diag-
nosis [93]. Reduced gray matter volume of the left ITG 
was also detected in children with low-functioning ASD 
[94] and related to communication skills [95]. Similar to 
the ACC, smaller gray matter volume in the ITG might 
be related to less activity after structural normalization, 
relating our finding of an increase after NF training to 
compensatory processes. The positive correlation of 
PerAF changes in the rITG cluster with changes in emo-
tional negativity (LN subscale) would imply a worsening 
in emotional negativity accompanying an increase in ITG 
activity. This, however, is in contradiction with our other 
findings and might be owed to the exploratory nature of 
the analysis.

Besides the temporal lobe results found at rest, which 
did not survive correction for the number of models, we 
also identified a positive correlation between fMRI dif-
ferentiation in the right ITG and improvements in CE. 
Laterality of this correlation as well as specificity for cog-
nitive compared to affective empathy are supported by 
findings in unilateral mesial temporal lobe epilepsy [97] 
and personal/impersonal emotional imagery [98].

The Rolandic operculum and emotion regulation
The correlation between the “Down” condition (SCP 
positivity) and the increase in the ER score mostly cov-
ers the posterior Rolandic operculum reaching to the 
insula and superior temporal gyrus. This particular result 
might be explained by the role of the Rolandic opercu-
lum in language encoding [100] and emotion processing 
[101]: Reduced activation was found in the left Rolan-
dic operculum of adults with ASD compared to neuro-
typical individuals regarding speech [102]. The Rolandic 
operculum further showed increased activation during 
emotion induction with happy compared to sad music 
[103]. Similar results were obtained for the superior tem-
poral gyrus of children with low-functioning autism and 
age-matched controls using speech recordings of their 
parents and each child’s favorite song containing vocals 
[104]. These previous findings suggest two possible con-
clusions related to NF: First, our reported activation 
related to improvements on the ER subscale was evoked 
by self-induced positive mood, possibly in combination 
with sound imagination. Second, less severe language 
deficits facilitated the development of strategies involving 
inner speech, which had a positive impact on ER.

On the role of SCP positivity in particular, we can only 
make an indirect assumption: Better SCP differentiation 
was previously associated with less relaxation when try-
ing to produce negative SCP shifts [105], suggesting that 

the potentially induced positive mood is a side effect of 
more relaxation when trying to produce positive shifts.

The precentral gyrus at rest
Lastly, we found an increase in resting activity in the right 
motor cortex of the TAU group, which was biased by a 
baseline difference. The unspecific correlations to the 
amount of in-scanner head motion, the fact that motion 
decreased in the SCP NF but PerAF increased in the TAU 
group and the effect surviving a correction for motion 
on group-level, speak against movement-related motor 
activity as sole cause. Altered connectivity of motor 
regions [107, 108] as well as motor impairments [109] 
are known in ASD. Higher visuomotor impairment was 
associated with increased ALFF in the precentral cortex, 
among other regions [110]. Furthermore, ASD without 
ADHD was shown to be related to increased and ADHD 
to decreased gray matter in the precentral gyrus among 
other regions [111, 112]. Assuming that the baseline dif-
ference in precentral gyrus PerAF is reflecting more defi-
cits/higher symptom severity in pre-treatment measures 
in the SCP NF group (i.e., increased movement, higher 
SRS scores), the observed increase in the TAU group can-
not be seen as a positive therapeutic effect.

Limitations
Some results barely missed statistical significance after 
multiplicity adjustment, but were deemed relevant in 
relation to others and thus further discussed. Despite 
correcting for in-scanner head movement far beyond 
the standard procedure in multiple steps, residual arti-
facts are likely present in the data, as can be concluded 
from the correlation with the RS models (see Additional 
file 1: Figure S1). However, since the PerAF findings sur-
vived an additional control for the quantified motion on 
group-level, in-scanner movements unlikely are the cause 
of our findings. A potential preventive approach to fur-
ther reduce head motion in future studies might be the 
low-demand video “Inscapes” [113]. The brain regulation 
data could only be reasonably acquired in the NF group 
and after the training, so all conclusions drawn from the 
data are necessarily purely correlational. We also kept 
the acquisition as short as possible expecting increasing 
movement and decreasing attention throughout each 
session.

During the brain regulation task, we could not check 
whether participants really applied the strategies learned. 
Concurrent EEG recordings were not possible but would 
have been of little use in this case since, on average, our 
participants did not gain control over the SCP signal in 
the absence of feedback (27).
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Conclusion
SCP NF as well as TAU led to unspecific positive effects 
over both treatment groups. These effects comprise 
increases in resting activity in regions known to be 
affected in ASD and improvements in several affective 
domains. The affective improvements correlated with 
the activation corresponding to SCP regulation in com-
parable regions. The neuronal effects were, however, 
largely unrelated to the achieved degree of SCP regula-
tion during NF training. Besides corroborating the role 
of regional alterations and affective functioning in ASD, 
our findings suggest that the application of distinct NF 
regulation strategies rather than SCP NF itself leads to 
affective symptom improvements. Future research is 
needed to clarify the distinct influences of SCP positivity 
and negativity as well as the role of individual regulation 
strategies.
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