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Abstract
Background Attention-deficit/hyperactivity disorder (ADHD) is diagnosed in accordance with Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition criteria by using subjective observations and information provided 
by parents and teachers. However, subjective analysis often leads to overdiagnosis or underdiagnosis. There are 
two types of motor abnormalities in patients with ADHD. First, hyperactivity with fidgeting and restlessness is the 
major diagnostic criterium for ADHD. Second, developmental coordination disorder characterized by deficits in the 
acquisition and execution of coordinated motor skills is not the major criterium for ADHD. In this study, a machine 
learning-based approach was proposed to evaluate and classify 96 patients into ADHD (48 patients, 26 males and 
22 females, with mean age: 7y6m) and non-ADHD (48 patients, 26 males and 22 females, with mean age: 7y8m) 
objectively and automatically by quantifying their movements and evaluating the restlessness scales.

Methods This approach is mainly based on movement quantization through analysis of variance in patients’ 
skeletons detected in outpatient videos. The patients’ skeleton sequence in the video was detected using OpenPose 
and then characterized using 11 values of feature descriptors. A classification analysis based on six machine learning 
classifiers was performed to evaluate and compare the discriminating power of different feature combinations.

Results The results revealed that compared with the non-ADHD group, the ADHD group had significantly larger 
means in all cases of single feature descriptors. The single feature descriptor “thigh angle”, with the values of 
157.89 ± 32.81 and 15.37 ± 6.62 in ADHD and non-ADHD groups (p < 0.0001), achieved the best result (optimal cutoff, 
42.39; accuracy, 91.03%; sensitivity, 90.25%; specificity, 91.86%; and AUC, 94.00%).

Conclusions The proposed approach can be used to evaluate and classify patients into ADHD and non-ADHD 
objectively and automatically and can assist physicians in diagnosing ADHD.
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Background
Attention-deficit/hyperactivity disorder (ADHD) is among 
the most common childhood behavioral disorders. A 
national survey conducted in 2016 revealed that 9.4% of 
children in the United States had been diagnosed as hav-
ing ADHD and that 8.4% currently had ADHD [1, 2]. 
Currently, ADHD is diagnosed in accordance with Diag-
nostic and Statistical Manual of Mental Disorders (DSM), 
Fifth Edition (DSM-V) criteria [3]. In clinical practice, the 
ADHD diagnosis is often limited to subjective diagnosis 
of parents and teachers or that objective diagnosis is dif-
ficult and requires the input of an experienced clinician, 
results of standardized rating scales, and input from mul-
tiple informants across various settings [4]. There are two 
types of motor abnormalities in patients with ADHD, 
including hyperactivity and coordination impairment [5]. 
Hyperactivity with fidgeting and restlessness is the major 
diagnostic criterium for ADHD [6–8]. However, devel-
opmental coordination disorder characterized by deficits 
in the acquisition and execution of coordinated motor 
skills is not the major criterium for ADHD. In the present 
study, we tried to use OpenPose to quantify their move-
ments and evaluate the restlessness scales in patients with 
ADHD. Several studies have objectively measured move-
ment patterns in individuals with ADHD. However, these 
studies have numerous limitations. First, these studies 
have used accelerometers (actigraphy and inertial mea-
surement units) that require the device to be attached to 
the participant’s body [9], limiting their ecological valid-
ity. Second, studies have employed infrared devices, which 
is easily interfered by light or other noise. In addition, 
infrared usually requires the use of special detection and 
software equipment [10]. Third, other studies have used 
impulse-radio ultra-wideband radar for monitoring hyper-
active individuals with ADHD and healthy controls during 
a 22-min continuous performance test (CPT). Although 
this is a noncontact method, the surrounding moving 
objects of the CPT environment will interfere with radar 
detection and CPT is not a naturalistic setting [11]. In the 
present study, we used OpenPose to detect body move-
ments in patients with ADHD by a regular camera. It is a 
convenient, time-saving, and noncontact method. In addi-
tion, we conduct detection during regular consultation 
and will not affect normal visiting behavior.

OpenPose, a posture-tracking algorithm that uses deep 
learning, was has become an essential tool for human 
posture tracking [12]. OpenPose is a real-time, multiper-
son system that can detect 135 facial, body, hand, and foot 
feature points simultaneously by a single image [12, 13]. 
Patients’ images and activities can be recorded when they 
are sitting in a consulting room only by a simple camera. 
OpenPose has been used to diagnose and monitor epilepsy 
[14], Parkinson’s disease [15], and osteoarthritis (OA) [16] 
as well as track multiperson movements on a single image 

[12]. A study used OpenPose to track the movements of 
patients with epilepsy. Their findings indicated that this 
method provided improved posture-tracking information 
in clinical settings. The accuracy rates in head pose esti-
mation in all patients were over 97% [17]. In patients with 
Parkinson’s disease, Sato et al. used OpenPose to analyze 
daily clinical movies recorded from the frontal view and 
determine continuous gait features from these movies by 
extracting body joint coordinates with OpenPose. Their 
results demonstrated a parkinsonian gait with obvious 
freezing gait and involuntary oscillations. The periodicity 
of each gait sequence can be calculated by an autocorre-
lation function–based statistical distance metric. Partici-
pants’ baseline disease status was significantly correlated 
with the metric [15, 18]. OpenPose was used to replace an 
expensive gait analysis tool applied for detecting the knee 
adduction moment (KAM) in patients with knee OA by 
Boswell et al. The KAM was compared between 64 par-
ticipants with and without OA with natural and modified 
walking (foot progression angle modifications) through 
two-dimensional video analysis. The results demonstrated 
that on the basis of the positions of anatomical landmarks 
determined through motion tracking, a neural network 
accurately predicted the peak KAM during natural and 
modified walking. The results also validated the feasibil-
ity of measuring the peak KAM on the basis of positions 
determined using OpenPose [16]. To accurately and objec-
tively classify the patients with and without ADHD in a 
consulting room, we evaluated movements by using the 
OpenPose system and then analyzed the movements of 
patients with and without ADHD.

Methods
Overview
Our method included two phases, i.e., movement detec-
tion and characterization and feature discriminability 
analysis, as shown in Fig.  1. In the phase of movement 
detection and characterization, skeleton detection was 
performed by the “openpose” on each subject’s outpatient 
video to detect the corresponding skeleton sequence. 
Then, the corresponding set of 11 skeleton parameter 
sequences was calculated from each subject’s detected 
skeleton sequence. After that, the average variance of 
each of 11 skeleton parameter sequences was calculated 
by a sliding window approach, resulting in an 11-dimen-
sional feature vector. Finally, the dataset of all subjects’ 
feature vectors and corresponding labels was obtained. 
In the next phases, i.e., feature discriminability analysis, 
the statistical comparison, cutoff, and classification were 
performed on the obtained dataset to verify the discrim-
inability of each feature and each feature combination. 
For each feature, the statistical comparison analysis was 
applied to present the statistical significance between 
ADHD and non-ADHD; the cutoff analysis was used to 



Page 3 of 19Ouyang et al. Child and Adolescent Psychiatry and Mental Health           (2024) 18:60 

find the optimal cutpoint and calculate the correspond-
ing performance indices. To further discover the discrim-
inability of multiple features, the classification analysis 
based on 17 feature combinations and six well-known 
machine learning classifiers was performed, and the 
corresponding performance indices and ranking were 
calculated.

Participants
We included 48 children (26 males and 22 females, 
mean age: 7 years 6 months ± 2 years 2 month) with 
ADHD (ADHD group) and 48 children (26 males and 22 
females, mean age: 7 years 8 month ± 2 years 2 months) 
without ADHD (non-ADHD group), all of whom were 
examined by a pediatric neurologist and asked to sit on 
a chair for data recording. A diagnosis of ADHD was 
made in accordance with DSM-V criteria. ADHD sever-
ity was evaluated using the 26-item Swanson, Nolan, and 
Pelham Rating Scale (SNAP-IV), including 18 items on 
ADHD symptoms (nine related to inattentiveness and 
nine related to hyperactivity/impulsiveness) and eight 
items on oppositional defiant disorder symptoms speci-
fied in DSM, Fourth Edition criteria. Each item measures 
the frequency of the appearance of symptoms or behav-
iors, in which the observer indicates whether the behav-
ior occurs “not at all”, “just a little”, “quite a bit”, or “very 
much”. The items were scored by observer on a 4-point 
scale from 0 (not at all) to 3 (very much). The ADHD is 
divided into three major type: inattentiveness (ADHD-
I, children with this type of ADHD exhibit no or few 
signs of hyperactivity or impulsivity. Instead, the chil-
dren will get distracted easily and difficult to pay atten-
tion), hyperactivity/impulsivity (ADHD-H, the children 
will demonstrate signs of hyperactivity and the need to 
move constantly and display impulsive behavior. They 
show no or few signs of getting distracted or inattention), 
and combined (ADHD-C, the children will demonstrate 

impulsive and hyperactive behavior and get distracted 
easily). To prevent biased comparison, children with a 
history of intellectual disability, drug abuse, head injury, 
or psychotic disorders were excluded from the ADHD 
group. The diagnoses in the patients without ADHD were 
headache, epilepsy, and dizziness, which are common 
in pediatric neurology. Written informed consent was 
obtained by a participant’s family member or legal guard-
ian after the procedure had been explained. In addition, 
informed consent was also obtained from them for the 
publication of their children’s images. This study was 
approved by the Institutional Review Board of Kaohsiung 
Medical University Hospital (KMUIRB-SV(I)- 20190060).

Movement detection and characterization
We propose an objective and automatic approach to eval-
uate the movements of patients with ADHD and com-
pare them with those of patients without ADHD. This 
approach is mainly based on movement quantization 
through the analysis of variance in patients’ skeletons 
detected automatically in outpatient videos (specifically, 
4–6-min video recordings per patient). The 2D camera 
(I-Family IF-005D) was used to capture movement vid-
eos of each patient, with video recordings obtained at 
a frame rate of 30  Hz for each patient and a resolution 
of 1280 × 720. The camera was placed in a fixed position 
in the consulting room, as shown in Fig. 2. To minimize 
comparison bias, only the initial 4-min video recording 
was considered for analysis. To quantify the patients’ 
movements in an outpatient video objectively and auto-
matically, we used OpenPose for detecting the patient’s 
skeleton in each video frame. This study employed two-
dimensional (2D) real-time multiperson skeleton detec-
tion [12]. Figure  3 presents an example of the detected 
skeleton of a patient represented by 25 key points (joints): 
nose (0), neck (1), right shoulder (2), right elbow (3), right 
wrist (4), left shoulder (5), left elbow (6), left wrist (7), 

Fig. 1 Flowchart of the proposed approach
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middle hip (8), right hip (9), right knee (10), right ankle 
(11), left hip (12), left knee (13), left ankle (14), right eye 
(15), left eye (16), right ear (17), left ear (18), left big toe 
(19), left small toe (20), left heel (21), right big toe (22), 
right small toe (23), and right heel (24). The detection 
result of each skeleton was represented by the 2D coordi-
nates of these 25 joints in the image domain.

Assume P t = {⇀
p

t

i|i = 0, 2, . . . , 24}  is the set of the 25 
detected joints in the t th frame of an outpatient video. 
Let the frame coordinate of the i th joint ⇀

pi

t  be repre-
sented by (xi

t, yi
t) , where xi

t ∈ {0, 1, . . . , Nx − 1}  and 
yi

t ∈ {0, 1, . . . , Ny − 1} . Nx  and Ny  are the frame’s 
width and height, respectively. On the basis of the natu-
ral connections (bones) between some pairs of joints, 
several bone vectors were defined, such as the right 
shoulder ⇀

b1,2

t

= (x2
t − x1

t, y2
t − y1

t)  from the neck 
joint ⇀

p
t

1
 to the right shoulder ⇀

p2

t  and the left shoulder 
⇀

b1,5

t

= (x5
t − x1

t, y5
t − y1

t)  from the neck joint ⇀
p1

t  to 
the left shoulder ⇀

p5

t . To extract the skeleton’s features 
for characterizing patients’ movements and differenti-
ate them between the ADHD and non-ADHD groups in 
outpatient videos, two types of skeleton parameters were 
defined, namely bone length and bone angle. For a bone 

vector ⇀

bi,j

t

= (xj
t − xi

t, yj
t − yi

t), bone length lti,j  was 
defined as follows:

 lti,j = 2
√

(xj
t − xi

t)2 + (yj
t − yi

t)2,  (1)

Bone angle θt
i,j  was defined as follows:

 
θt
i,j =

∣∣∣∣tan−1
[

(yj
t − yi

t)
(xj

t − xi
t)

]
× 180

π

∣∣∣∣ .  (2)

On the basis of the patients’ movements observed in 
outpatient videos, six bone vectors, namely the right 
shoulder, left shoulder, right hip, left hip, right thigh, and 
trunk, were selected, and the corresponding lengths and 
angles were calculated. In addition to the right shoulder 
and left shoulder defined previously, four bone vectors 
were defined as follows:

1. Right hip ⇀b8,9

t

= (x9
t − x8

t, y9
t − y8

t)  from the 
middle hip joint ⇀p8

t  to the right hip ⇀p9

t ;
2. Left hip ⇀b8,12

t

= (x12
t − x8

t, y12
t − y8

t) from the 
middle hip joint ⇀p8

t  to the left hip ⇀p12

t ;

Fig. 2 The camera’s position and view in the consultation room
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3. Right thigh ⇀b9,10

t

= (x10
t − x9

t, y10
t − y9

t) from the 
right hip joint ⇀p9

t  to the right knee joint ⇀p10

t ;
4. Trunk ⇀b1,8

t

= (x8
t − x1

t, y8
t − y1

t)  from the neck 
joint ⇀p1

t  to the middle hip joint ⇀p8

t .

The right thigh was selected instead of the left thigh 
because the left thigh was usually partially occluded by 
the right thigh owing to the seated position of the patient. 
The corresponding lengths and angles of all bone vectors 

Fig. 3 Example of a patient’s skeleton detection. A detected patient’s skeleton represented by 25 key points and the corresponding skeleton parameters: 
a detected skeletons; b 25 key points; c shoulder-related and hip-related parameters; and d) thigh-related and trunk-related parameters
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except the trunk were calculated using Eqs.  (1) and (2), 
respectively, resulting in five length-related skeleton 
parameters, namely lt1,2 , lt1,5 , lt8,9 , lt8,12 , and lt9,10 , and five 
angle-related skeleton parameters, namely θt

1,2 , θt
1,5 , θt

8,9
, θt

8,12, and θt
9,10. The corresponding angle of trunk bone 

vector θt
8,1  was calculated using the following equation:

 
θt

8,1 =
{

ϕt
i,j, if ϕt

i,j ≥ 0
ϕt

i,j + 180, if ϕt
i,j < 0

where ϕt
i,j = tan−1

[
(yj

t − yi
t)

(xj
t − xi

t)

]
×

180
π

.  (3)

Eleven skeleton parameters were extracted to character-
ize the detected skeleton in each frame of an outpatient 
video. For an outpatient video composed of T  frames, 
T  detected skeletons were present. The corresponding 
T  values of each skeleton parameter constituted a time 
series. Thus, 11 time series corresponding to 11 skeleton 
parameters were obtained to characterize the detected 
skeleton sequence in the video.

Let li,j = (l1i,j, l
2
i,j, . . . , l

T
i,j) and θi,j = (θ1

i,j, θ
2
i,j, . . . , θ

T
i,j) 

be the two series of the length and angle, respectively, 
corresponding to bone vector ⇀

bi,j

t
. To characterize the 

variation in values in each series, the averaged variances 
of series li,j  and θi,j  were calculated using a sliding win-
dow approach:

 
σ2 (

li,j
)

=
1
K

K∑

k=1

σ2
(
l̃ki,j

)
, σ2

(
l̃ki,j

)
=

1
R − 1

r+R−1∑

t=r

(
lti,j − m

(
∼
l
k

i,j

))2

 (4)

 
σ2 (

θi,j

)
=

1
K

K∑

k=1

σ2
(
θ̃k

i,j

)
, σ2

(
θ̃k

i,j

)
=

1
R − 1

r+R−1∑

t=r

(
θt
i,j − m

(
θ̃k

i,j

))2

 (5)

where θ̃
k

i,j =
(
lri,j, l

r+1
i,j , . . . , lr+R−1

i,j

)
 and θ̃

k

i,j =
(
θr
i,j, θ

r+1
i,j ,

. . . , θr+R−1
i,j

)
, r = (k − 1) × R + 1, are the k th subse-

quences of li,j  and θi,j  with a window size of R ; m
(
l̃
k

i,j

)
 

and m
(
θ̃

k

i,j

)
 are the corresponding means; σ2

(
l̃
k

i,j

)
 and 

σ2
(
θ̃

k

i,j

)
 are the corresponding variances; and K  is the 

number of subsequences. Thus, 11 values of feature 
descriptors, σ2

(
l1,2

)
,  σ2

(
l1,5

)
,  σ2

(
l8,9

)
,  σ2

(
l8,12

)
, 

σ2
(
l9,10

)
, σ2

(
θ1,2

)
,  σ2

(
θ1,5

)
,  σ2

(
θ8,9

)
,  σ2

(
θ8,12

)
, 

σ2
(
θ9,10

)
, and σ2

(
θ1,8

)
, were obtained to characterize 

the patient’s movement in an outpatient video. Finally, 
a two-dimensional dataset matrix with 96  rows and 12 
columns was obtained for the following feature discrim-
inability analysis. Note that each row corresponds to one 
subject’s 11 feature descriptor values (i.e., 11 averaged vari-
ances of skeleton parameters’ series detected from the ini-
tial 4-minute video recording) and one class label (ADHD 
or non-ADHD).

Feature discriminability analysis
To evaluate and compare the discriminating power of dif-
ferent features between the ADHD and non-ADHD groups, 
we determined an optimal cutoff. We adopted bootstrap-
ping to prevent highly variable results and systematic 

overestimation of the out-of-sample performance. Let 
S = {( fn, cn )| n = 1, 2, . . . , 96}  be the original sample set 
of the feature descriptor to be evaluated, where fn  and cn  
are the corresponding value and class label, respectively, of 
the nth patient. Each time, a so-called “bootstrap” or in-bag 
sample set S̃ , with the same size (i.e., 96) as that of S , was 
drawn randomly with replacement, and samples not drawn 
constituted a so-called “out-of-bag sample set.” On average, 
an in-bag sample set S̃  included 63.2% of all the samples of 
original sample set S  because some samples were drawn 
multiple times [19]. An optimal cutpoint was determined by 
computing the performance index of discriminative ability 
at each value of the feature descriptor in the in-bag sample 
set S̃ , and then selecting the feature value with the largest 
Youden index (defined as sensitivity + specificity − 1
) value as the optimal cutpoint. Note that Sensitivity  was 
the percentage of the correct prediction of the class “ADHD” 
for all patients in the ADHD group, while Specificity  was 
the percentage of the correct prediction of the class “non-
ADHD” for all patients in the non-ADHD group. After that, 
the obtained optimal cutpoint was applied to the out-of-bag 
sample set, and the corresponding four performance indi-
ces, namely accuracy , sensitivity , specificity , and area 
under the receiver operating characteristic curve (AUC), 
were calculated. Accuracy  was the percentage of the cor-
rect prediction of the “ADHD” or “non-ADHD” class for all 
patients in both the groups. AUC  was plotted with pairs 
of values of 1 − specificity  and sensitivity  correspond-
ing to binary classification results obtained using different 
classification threshold values. The above process of opti-
mal cutpoint searching in an in-bag sample set and testing 
in the corresponding out-of-bag sample set was repeated 
100 times and the 100 different optimal cutoff values each 
with the corresponding values of four test performance 
indices were obtained. Finally, the average optimal cutpoint 
and four average test performance indices were calculated 
for evaluating the feature descriptor’s discriminating power 
between the ADHD and non-ADHD groups based on the 
cutoff analysis.

To evaluate the discriminating power of different fea-
ture combinations between the ADHD and non-ADHD 
groups, we performed classification analysis based on six 
machine learning classifiers and employed hyperparam-
eter tuning with five-fold cross-validation to identify the 
most suitable model parameters. The adaptive boosting 
(AdaBoost) model’s weak classifiers were implemented 
with the classification and regression tree (CART) algo-
rithm, and the corresponding parameter n-estimators 
were optimized within {1, 5, 10, 20, 30, 50}. The deci-
sion tree classifiers were implemented with CART algo-
rithm, and the corresponding parameter max-depth was 
optimized within {1, 2, 3, 5, 7}. The k-nearest neighbors 
(KNN) model’s parameter n-neighbors was optimized 
within {1, 2, 3}. The random forest model’s parameters 
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max-features, max-depth, and n-estimators were opti-
mized with a grid search within {1, 2, 3}, {1, 2, 3, 5, 7}, 
and {1, 5, 10, 20, 30, 50}, respectively. The support vector 
machine (SVM) model’s kernel type was set as the radial 
basis function, and the corresponding parameters gamma 
and C were optimized with a grid search within {50, 
100, 300, 500} and {0.001, 0.01, 0.1, 1}, respectively. The 
extreme gradient boosting (XGBoost) model’s weak clas-
sifiers were implemented with the CART algorithm, and 
the corresponding parameters learning rate, max-depth 
and n-estimators were optimized with a grid search 
within {0.1, 0.2, 0.3}, {1, 2, 3, 5, 7}, and {1, 5, 10, 20, 30, 
50}, respectively. Seventeen feature combinations were 
evaluated and compared, including the 11 single features 
and six additional feature combinations—two thigh-
related features (thigh-related) {σ2

(
l9,10

)
, σ2

(
θ9,10

)
},  

four shoulder-related features (shoulder-related) 
{σ2

(
l1,2

)
, σ2

(
l1,5

)
, σ2

(
θ1,2

)
, σ2

(
θ1,5

)
},  four hip-

related features (hip-related) {σ2
(
l8,9

)
, σ2

(
l8,12

)
,

{σ2
(
θ8,9

)
, σ2

(
θ8,12

)
},  five length-related fea-

tures (length-related) {σ2
(
l1,2

)
, σ2

(
l1,5

)
, σ2

(
l8,9

)
,

σ2
(
l8,12

)
}, σ2

(
l9,10

)
, six angle-related features (angle-

r e l a t e d ) {σ2
(
θ9,10

)
, σ2

(
θ1,2

)
, σ2

(
θ1,5

)
, σ2

(
θ8,9

)
,

σ2
(
θ8,12

)
, σ2

(
θ8,1

)
}, and all 11 features (all).

For each feature combination, the corresponding data-
set comprised 48 feature vectors with “ADHD” labels 
and 48 with “non-ADHD” labels. To minimize the bias 
of model evaluation, the resampling strategy of 10-fold 
cross-validation was repeated 10 times. In each repeti-
tion, the dataset was equally and randomly partitioned 
into 10 folds, with each being composed of four to five 
“ADHD” and four to five “non-ADHD” feature vectors. 
Next, a fold was selected as the test dataset, and the 
remaining folds were selected as the training dataset. This 
training–test partitioning process was repeated 10 times, 
with each of the 10 folds being used only once as the test 
dataset. Moreover, the resampling strategies of 8:2 and 
6:4 training-test random splits (holdout methods) with 
100 repeats were also be applied for comparison. A total 
of 100 pairs of training and test datasets were obtained 
in each resampling strategy. For each pair, the training 
dataset was used to train the considered classifier and the 
test dataset was used to evaluate the trained classifier’s 
classification performance on the basis of four classifica-
tion performance indices, namely accuracy, sensitivity, 

specificity, and AUC. The 100 values of each index cor-
responding to the 100 test datasets were averaged to esti-
mate the classification test performance of the classifier. 
The larger the values of all four indices were, the stronger 
the discriminating power of the combination of the fea-
ture set and classifier was. To compare the discriminat-
ing power of the 17 feature sets across the six classifiers, 
the averaged ranking of each feature set corresponding 
to each classification performance index was calculated 
by averaging the feature set’s ranks in the corresponding 
index’s results of six classifiers. The smaller the averaged 
rank values of all four indices were, the stronger the dis-
criminating power of the feature set was.

Statistical analysis
All statistical analyses were conducted using SAS (v9.3; 
SAS Institute, Cary, NC, USA). Data are presented as 
means ± standard deviation. Measurements between 
patients with and without ADHD were conducted using 
the two-sample t test. P < 0.05 was considered statistically 
significant.

Results
We enrolled 48 patients with ADHD and 48 age- and sex-
matched patients without ADHD (Table 1). There was no 
significant difference in age between with and without 
ADHD (p = 0.647). Each group comprised 26 boys and 22 
girls. Twenty boys had ADHD-C, four boys had ADHD-I, 
and two boys had ADHD-H; 16 girls had ADHD-C; and 
six girls had ADHD-I. Among ADHD subtypes, ADHD-
C and ADHD-H are the most prevalent (78.0–81.7%), 
followed by ADHD-I (18.3–22.0%) in the literatures 
[20–22]. In this study, 38 of the 48 patients had ADHD-
C or ADHD-H. Therefore, most of the recruited patients 
exhibited hyperactive symptoms. The SNAP-IV scores 
obtained from parents and teachers were 36.88 ± 16.05 
and 34.09 ± 16.19, respectively.

To explore and compare detected movement data 
between the ADHD and non-ADHD groups visually, the 
curves of the five length-related and six angle-related 
skeleton parameter time series between one patient with 
ADHD (red curves) and one patient without ADHD 
(blue curve) were plotted and are presented in Figs. 4 and 
5, respectively. Curves corresponding to the same patient 
were plotted for a length of 60  s only because of visual 
clarity. The curves of the patient with ADHD fluctuated 
more and were larger than those of the patient with-
out ADHD. This finding indicates that the patient with 
ADHD exhibited frequent and larger movements of the 
corresponding body part, especially the shoulder, hip, 
and thigh. We used the t test to compare the data of each 
single feature descriptor of the skeleton parameter’s aver-
aged variance between the groups. The results are listed 
in Table  2. Compared with the non-ADHD group, the 

Table 1 Demographic data of patients with ADHD
Sex 
(M/F)

Age Index Parent’s 
SNAP score

Teacher’s 
SNAP score

26/22 7y6m ± 2y2m Inattention 13.62 ± 5.40 15.11 ± 6.49
Hyperactivity-
impulsivity

12.78 ± 7.28 11.58 ± 7.54

Oppositional 10.39 ± 6.78 7.39 ± 6.47
Total 36.88 ± 16.05 34.09 ± 16.19
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ADHD group had larger means in all cases of single fea-
ture descriptors and larger variances in eight cases. Each 
single feature descriptor significantly differed between 
the ADHD and non-ADHD groups. Because a larger 
averaged variance indicated more and larger fluctuations 
in a skeleton parameter’s time series, the result of the sta-
tistical comparison was verified using the visual observa-
tion findings.

To determine the discriminability of each single feature 
descriptor between the ADHD and non-ADHD groups, 
we determined the cutoff, and the results are presented 
in Table 3. The feature descriptor “thigh angle” achieved 
the most favorable result with an optimal cutoff of 42.39, 
an accuracy of 91.03%, a sensitivity of 90.25%, a specific-
ity of 91.86%, and an AUC of 94.00%. The second-best 
feature descriptor was “thigh length,” which yielded an 
accuracy of 86.21%, a sensitivity of 84.28%, a specificity 
of 88.08%, and an AUC of 93.04%, and the corresponding 
optimal cutoff was 45.57.

Figures 6, 7, 8 and 9 present the comparisons of sensi-
tivity, specificity, accuracy, and AUC by three resampling 
strategies among six classifiers for each of the 17 feature 
sets. Some classifiers exhibited satisfactory classifica-
tion performance for all four indices for each of the four 
feature sets: thigh angle, thigh related, angle related, and 
all. By the 10-fold cross-validation with 10 repeats, all 

classifiers for the thigh angle feature set achieved values 
of over 85% for all four indices, except KNN. Among all 
“feature set + classifier” combinations, “All + decision tree” 
exhibited the highest sensitivity (91.40%), “left shoulder 
length + SVM” exhibited the highest specificity (96.80%), 
“thigh angle + SVM” exhibited the highest accuracy 
(92.10%), and “All + Random Forest” exhibited the high-
est AUC (95.22%). By the 8:2 training-test random splits 
with 100 repeats, all classifiers for the thigh angle feature 
set achieved values of over 87% for all four indices, except 
KNN. Among all “feature set + classifier” combinations, 
“thigh angle + XGBoost” exhibited the highest sensitiv-
ity (91.30%), “left shoulder length + SVM” exhibited the 
highest specificity (97.40%), “thigh angle + XGBoost” 
exhibited the highest accuracy (91.10%), and “angle-
related + Random Forest” exhibited the highest AUC 
(95.38%). By the 6:4 training-test random splits with 
100 repeats, all classifiers for the thigh angle feature set 
achieved values of over 86% for all four indices, except 
KNN. Among all “feature set + classifier” combinations, 
“angle-related + XGBoost” exhibited the highest sensi-
tivity (91.60%), “left shoulder length + SVM” exhibited 
the highest specificity (96.25%), “thigh angle + XGBoost” 
exhibited the highest accuracy (91.20%), and “angle-
related + Random Forest” exhibited the highest AUC 
(94.53%). Tables 4, 5 and 6 present the averaged rankings 

Fig. 4 Curve plots of five length-related skeleton parameters between one patient with ADHD and one patient without ADHD.
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of all feature combinations corresponding to each classi-
fication performance index with three resampling strat-
egies. By the 10-fold cross-validation with 10 repeats, 
the “thigh angle” feature set ranked first in terms of its 

specificity and AUC, second in terms of its accuracy, and 
third in terms of its sensitivity. The “All” feature combi-
nation ranked first in terms of its accuracy and sensitiv-
ity, second in terms of its AUC, and fourth in terms of 
its specificity. The “thigh-related” feature combination 
ranked second in terms of its specificity, third in terms 
of its accuracy and AUC, and fourth in terms of its sen-
sitivity. By the 8:2 training-test random splits with 100 
repeats, the “thigh angle” feature set ranked first in terms 
of its accuracy and sensitivity, and fourth in terms of its 
specificity and AUC. The “angle-related” feature combi-
nation ranked first in terms of its AUC, second in terms 
of its accuracy and sensitivity, and fourth in terms of its 
specificity. The “All” feature combination ranked sec-
ond in terms of its AUC, third in terms of its sensitivity 
and AUC, and fourth in terms of its accuracy. By the 6:4 
training-test random splits with 100 repeats, the “thigh 
angle” feature set ranked first in terms of all four indices. 
The “angle-related” feature combination ranked second 
in terms of its accuracy, sensitivity, and AUC. The “All” 

Table 2 Statistical comparison of 11 single feature descriptors 
between ADHD and non-ADHD groups
Feature Descriptor ADHD Non-ADHD p-value
Left shoulder angle 123.39 ± 17.35 74.36 ± 21.33 0.0008***
Right shoulder angle 141.33 ± 19.57 73.57 ± 21.37 < 0.0001***
Left hip angle 99.21 ± 14.22 51.62 ± 12.00 < 0.0001***
Right hip angle 127.43 ± 18.27 75.74 ± 19.27 0.0002***
Thigh angle 157.89 ± 32.81 15.37 ± 6.62 < 0.0001***
Trunk angle 50.60 ± 17.65 8.60 ± 2.53 < 0.0001***
Left shoulder length 39.69 ± 7.11 10.15 ± 1.70 < 0.0001***
Right shoulder length 39.78 ± 7.22 9.77 ± 1.66 < 0.0001***
Left hip length 16.72 ± 2.91 5.49 ± 1.14 < 0.0001***
Right hip length 18.29 ± 3.13 5.93 ± 1.09 < 0.0001***
Thigh length 164.99 ± 41.86 22.51 ± 7.31 < 0.0001***
Angle: degree/frame, length: pixel/frame

* p < 0.05, ** p < 0.01, *** p < 0.001

Fig. 5 Curve plots of six angle-related skeleton parameter time series between one patient with ADHD and one patient without ADHD
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Fig. 6 Comparison of the classification test performance of accuracy between classifiers among all feature combinations
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Fig. 7 Comparison of the classification test performance of sensitivity between classifiers among all feature combinations
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Fig. 8 Comparison of the classification test performance of specificity between classifiers among all feature combinations
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feature combination ranked third in terms of its accuracy, 
sensitivity, and AUC.

Discussion
This study revealed that variances in our measurements 
were significantly higher in the ADHD group than in the 
non-ADHD group. The classification performance of our 
proposed model was excellent, with sensitivity, specific-
ity, accuracy, and AUC of 91.40%, 96.80%, 92.10%, and 
95.22%, respectively. The main reason was defined fea-
ture descriptors, namely variances of skeleton param-
eters extracted from the detected subject’s skeleton, were 
highly discriminable between ADHD and non-ADHD 
groups, resulting in well-trained classification models 
and the correspoding superior generalization capabil-
ity. Thus, variances in measurements may be useful and 
objective markers that can assist in ADHD diagnosis.

The SNAP-IV questionnaire was initially proposed 
to assess ADHD symptoms in accordance with DSM, 
Third Edition [23, 24]. Although the SNAP-IV score has 
high validity and reliability [25–27], a study reported 
poor interrater agreement between parents and teach-
ers [28]. In addition, the parents’ scorings of inat-
tention and hyperactivity/impulsivity are favorable 
predictors for diagnosis in research but not in clinical 
diagnosis, whereas the teachers’ scorings of only hyper-
activity/impulsivity are satisfactory predictors for diag-
nosis both in research and clinical settings [26]. These 
discrepancies between parents’ and teachers’ scorings 
may lead to diagnostic uncertainty. In this study, we used 
skeleton detection to objectively evaluate the activities of 
the patients with ADHD. We observed that the activities 
of the patients with ADHD were significantly more than 
those of the patients without ADHD, indicating higher 
variances in our measurements.

Nowadays, there are some movement detection methods 
available to assist in diagnosing ADHD, including acceler-
ometers, actigraphy, infrared, and ultra-wideband radar. 
Each method has its strengths and weaknesses. Acceler-
ometers and actigraphy are mostly worn on the wrist or 

ankle for detecting specific movements of subjects. Both 
sensors can be used at home or school instead of a labora-
tory [9]. However, they need to be attached to the subject’s 
body, limiting their ecological validity. In addition, only 
body parts equipped with sensors can be recorded. The 
difference between accelerometers and actigraphy is that 
accelerometer analyzes the subject’s movements during 
normal daily activities and the recording time is limited 
by the power of battery [29], whereas actigraphy stud-
ies the subject’s sleep efficiency and the recording is lim-
ited by low sampling rate [30]. Regarding to infrared, the 
strength of infrared is noncontact without placing any type 
of sensor in the body of the subjects [10]. However, infra-
red detection is easily interfered by light or other noise. 
In addition, it usually requires the use of special detection 
and software equipment. For ultra-wideband radar, it is 
also a noncontact method without any sensor attached to 
the subject’s body. Moreover, it can be applied in various 
situations, such as during a test or in a naturalistic setting 
[11]. The disadvantages of ultra-wideband radar are that it 
needs to be used in a limited space and the surrounding 
moving objects of the environment will affect radar detec-
tion. Our proposed method also provides a noncontact 
method and can use the video for analysis from a regu-
lar camera. This method has good classification results 
between ADHD and non-ADHD in a short detection time. 
In addition, the detection can be conducted during regular 
consultation and will not affect normal visiting behavior. 
The weaknesses of our method are two folds: (1) the detec-
tion data may be interfered by human body occlusion. (2) 
the method needs to be used in a limited space (Table 7). 
However, in our consulting room, these two shortcomings 
can be overcome through experimental design. Further-
more, we also compare the performance metrics of our 
proposed method and other diagnostic methods that are 
using video recording (Table 8). Although the studies from 
Li et al. demonstrated high precision, they used adults as 
the study subjects and the case number was limited to 17 
[31, 32]. Sempere-Tortosa et al. used Microsoft Kinect V.2. 
to track joint movements of human bodies in children with 

Table 3 Cutoff analysis of 11 single feature descriptors between ADHD and non-ADHD groups
Feature descriptor Optimal cutpoint Accuracy Sensitivity Specificity AUC
Left shoulder angle 64.91 68.97 80.70 57.57 78.05
Right shoulder angle 75.94 73.20 79.65 66.78 82.25
Left hip angle 65.79 68.91 67.17 70.91 79.34
Right hip angle 69.49 68.77 78.02 59.20 74.69
Thigh angle 42.39 91.03 90.25 91.86 94.00
Trunk angle 15.41 82.77 82.41 83.10 92.89
Left shoulder length 20.52 81.34 72.76 90.00 92.34
Right shoulder length 18.13 79.25 77.43 81.02 93.20
Left hip length 9.71 82.09 75.84 88.31 90.59
Right hip length 9.18 77.94 80.19 75.43 91.02
Thigh length 45.57 86.21 84.28 88.08 93.04
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Fig. 9 Comparison of the classification test performance of AUC between classifiers among all feature combinations
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ADHD and controls. Although their results showed that 
the differences in movement were significant for 14 of the 
17 joints between two groups, this method requires spe-
cial detection and software equipment [33]. Our proposed 
method using only a regular camera is a convenient way to 

differentiate ADHD children and controls with high per-
formance indexes by selecting only one joint feature.

OpenPose is used to localize anatomical key points or 
regions; it focuses on identifying the body parts of indi-
viduals. Few studies have used a noncontact method, 

Table 4 Averaged ranking of all feature combinations corresponding to each classification performance index by the 10-fold cross-
validation with 10 repeats
Features Accuracy average rank Sensitivity average rank Specificity average rank AUC average rank
Left shoulder angle 15.66 7.83 16.83 15.50
Right shoulder angle 14.83 9.83 15.66 14.66
Left hip angle 15.66 16.66 14.00 15.66
Right hip angle 15.83 14.66 15.50 15.83
Thigh angle **2.16 ***2.66 *1.66 *1.33
Trunk angle 8.83 6.83 9.83 7.83
Left shoulder length 10.83 15.50 **2.66 8.83
Right shoulder length 7.50 13.00 9.50 11.33
Left hip length 11.83 12.50 6.66 8.16
Right hip length 11.66 10.66 12.16 12.5
Thigh length 6.16 5.33 5.16 4.83
Thigh-related ***3.16 4.00 **2.66 ***2.83
Shoulder-related 8.33 10.66 11.33 11.16
Hip-related 7.50 8.16 9.16 8.00
Angle-related 4.16 **2.50 7.33 4.50
Length-related 6.83 9.83 7.33 7.16
All *1.83 *1.50 4.83 **2.16
Bold underline: rank first

* rank first

** rank second

*** rank third

Table 5 Averaged ranking of all feature combinations corresponding to each classification performance index by the 8:2 training-test 
random splits with 100 repeats
Features Accuracy average rank Sensitivity average rank Specificity average rank AUC average rank
Left shoulder angle 15.67 10.50 16.83 15.33
Right shoulder angle 14.67 11.17 16.00 14.83
Left hip angle 15.83 17.00 13.83 16.00
Right hip angle 15.83 14.17 15.17 15.83
Thigh angle *1.83 *1.17 4.50 3.33
Trunk angle 9.00 6.83 11.17 9.33
Left shoulder length 9.17 15.33 *2.17 11.00
Right shoulder length 8.83 10.17 7.33 ***3.17
Left hip length 8.33 12.83 **3.17 11.33
Right hip length 12.83 12.17 12.83 12.33
Thigh length 5.50 6.33 6.83 8.50
Thigh-related 6.83 6.83 8.50 5.50
Shoulder-related 12.17 12.00 11.33 9.67
Hip-related ***3.33 4.00 ***4.00 6.17
Angle-related **2.50 **2.50 4.50 *2.50
Length-related 7.17 7.17 7.83 5.50
All 3.50 ***2.83 7.00 **2.67
Bold underline: rank first

* rank first

** rank second

*** rank third
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such as Kinect, to record the number of movements of 
patients with ADHD, and studies have reported sig-
nificant differences in the extent of objective movement 
between patients with ADHD and controls [33, 34]. Our 
study is the first to use OpenPose to objectively analyze 
the body movements of patients with and without ADHD 
in a consulting room. Classification performance was 
satisfactory, with the AUC being as high as 95.22%. Our 
proposed method can thus be an objective and reliable 
tool that can assist in ADHD diagnosis.

In this study, thigh angle and length had the high-
est discriminating power between the ADHD and non-
ADHD groups. Because the chair in the consulting room 
can be rotated by patients, body spin was the dominant 
movement. Sempere-Tortosa et al. investigated the 
movement patterns of patients with ADHD at a school 
by using the Kinect device, which can measure the move-
ments of different body parts. They determined that 
turning of the head when children with ADHD change 
their attentional focus to a different stimulus is the most 
common movement pattern [34]. Another study used 
two triaxial accelerometers as sensors that were applied 
to the wrist and ankle of the dominant arm and leg to 
record the movements of patients with ADHD and con-
trols 24  h a day. They believed that the hands and legs 
are the most active body parts of patients with ADHD 
[35]. Gross used a swivel chair to examine patients with 
ADHD. He determined that most patients attempted to 
spin the chair in one direction in the consulting room 

[36]. Consistently, our previous study indicated that the 
most frequent movement in patients with ADHD tended 
to be hand-tapping at school, as revealed by smart watch 
recordings [37]. Thus, the predominant movement pat-
tern may differ depending on the environment. In a con-
sulting room with a rotatable chair, as was the case in the 
current study, body spin calculated using the thigh angle 
feature may be a sensitive tool to differentiate between 
patients with and without ADHD.

This study has several limitations. First, sample sizes 
for each ADHD subtype, especially ADHD-I, were small. 
Thus, the results may not be generalizable to all ADHD 
subtypes. Studies should enroll more patients with dif-
ferent ADHD subtypes to comprehensively evaluate 
the diagnostic value of the objective tool in all the three 
subtypes. Second, uncontrollable factors may affect chil-
dren’s activities in a consulting room, including food 
intake on the day of consulting and examinations, sleep 
quality before examination, and other emotion prob-
lems. Studies should include a questionnaire to deter-
mine the relationship between these corresponding 
factors and children’s activities. Third, although we had 
excluded children with a history of psychotic disorders 
from the ADHD group and included patients with head-
ache, epilepsy, and dizziness only in non-ADHD group, 
underdiagnosis of autistic spectrum disorders or other 
movement disorders with comorbidity in both groups 
may still happen and interfere with our analytic results.

Table 6 Averaged ranking of all feature combinations corresponding to each classification performance index by the 6:4 training-test 
random splits with 100 repeats
Features Accuracy average rank Sensitivity average rank Specificity average rank AUC

average rank
Left shoulder angle 16.33 12.17 16.83 16.00
Right shoulder angle 14.33 9.00 15.67 14.67
Left hip angle 15.00 17.00 14.17 15.00
Right hip angle 16.33 14.67 15.33 16.33
Thigh angle *1.17 *1.50 *1.50 *2.17
Trunk angle 9.33 7.83 11.17 9.50
Left shoulder length 10.17 15.17 4.83 11.33
Right shoulder length 8.83 8.83 9.33 5.67
Left hip length 7.17 11.67 ***4.33 10.17
Right hip length 12.50 10.50 12.67 11.83
Thigh length 4.83 5.00 6.17 7.17
Thigh-related 2.17 2.67 **1.83 3.33
Shoulder-related 12.33 13.17 11.00 10.17
Hip-related 8.67 10.33 8.67 8.83
Angle-related **3.50 **2.00 5.33 **2.50
Length-related 6.50 7.67 7.17 5.33
All ***3.83 ***3.83 7.00 ***3.00
Bold underline: rank first

* rank first

** rank second

*** rank third
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Conclusions
Most patients with ADHD have ADHD-H or ADHD-C 
subtypes and exhibit the main symptom of hyperactivity. 
In this study, the proposed approach based on movement 
quantization through the analysis of variance in patients’ 
skeletons detected in outpatient videos effectively differ-
entiated between patients with and without ADHD. The 
experimental results revealed that compared with the 
non-ADHD group, the ADHD group had significantly 
larger means in all the cases of single feature descrip-
tors. Thigh-related feature descriptors played a key role 
in distinguishing the movements of patients between the 

ADHD and non-ADHD groups. In conclusion, the pro-
posed machine learning–based approach can serve as a 
reliable model for evaluating and classifying patients into 
ADHD and non-ADHD groups objectively and auto-
matically and can help physicians make clinical decisions 
regarding ADHD diagnosis.
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Table 7 Comparison the strengths and weaknesses of different 
methods in evaluation the movement abnormalities in patients 
with ADHD
Devices Strengths Weaknesses
Accelerometers 1. Subjects can use 

the devices at home 
or school instead of a 
laboratory.

1. The sensors need to 
be attached to the sub-
ject’s body, limiting their 
ecological validity.
2. Only body parts 
equipped with sensors 
are recorded.
3. Recording time is 
limited by the power of 
battery.

Actigraphy 1. Subjects can use 
the devices at home 
or school instead of a 
laboratory.

1. Actigraphy is mostly 
used to record sleep 
activities.
2. Only body parts 
equipped with sensors 
are recorded.
3. Recording is limited by 
low sampling rate.

Infrared 1. Can track and record 
joint movements with-
out placing any type of 
sensor in the body of 
the subject.

1. Infrared detection is 
easily interfered by light 
or other noise.
2. It usually requires the 
use of special detection 
and software equipment.

Ultra-wideband 
radar

1. It is a noncontact 
method without any 
sensor attached to the 
subject’s body.
2. It can be applied in 
various situations, such 
as during a test or in a 
naturalistic setting.

1. Need to be used in a 
limited space.
2. The surrounding 
moving objects of the 
environment will affect 
radar detection.

Our method 
(OpenPose)

1. It is a noncontact 
method.
2. Can use the video for 
analysis from a regular 
camera.
3. The method yields 
good classification 
results in a short detec-
tion time during regular 
consultation will not 
affect normal visiting 
behavior.

1. The detection data 
may be interfered by 
human body occlusion.
2. Need to be used in a 
limited space.

Table 8 Comparison the performance metrics between 
different methods using video in diagnosis of ADHD
Authors Patient 

number
Methods Performance 

metrics
Li et al. [31] 7 adult 

ADHD, and
10 controls

Videos are recorded in 
a series of consecutive 
tests for 70–80 min 
and subjects’ motions 
are analyzed by 
action-based analysis.

Using Pose C 3D 
network
Precision: 100%
F1: 88.9%
Accuracy: 88.2%
AUC: 83.0%

Li et al. [32] 7 adult 
ADHD, and
10 controls

Videos are recorded 
in four continuous 
dialogue tasks for 
70–80 min and sub-
jects’ motions are ana-
lyzed by time-action 
based analysis.

Using 3D-CNN 
structure network
Sensitivity: 100%
Precision: 90.9%
Accuracy: 94.1%
AUC: 97.0%

Sempere-
Tortosa et 
al. [33]

32 ADHD 
children 
with mean 
age 9y9m, 
and
33 controls 
with mean 
age 9 y 8 m

Track the joint move-
ments of human bod-
ies by Microsoft Kinect 
V.2. during a workshop 
in the classroom.

The differences 
found between 
ADHD and control 
groups are signifi-
cant for 14 of the 
17 joints, especially 
in spine base, left 
wrist, right elbow, 
right wrist, and 
right hip, with os-
cillating between 
0.83 and 1.12.

Our 
method

48 ADHD 
children 
with mean 
age 7y6m, 
and
48 controls 
with mean 
age 7 y 8 m

Videos are recorded 
during regular 
consultation for 
4–6 min and subjects’ 
motions are detected 
by OpenPose and 
averaged variances of 
skeleton parameters 
are analyzed.

Thigh angle used 
as a single feature 
descriptor
Accuracy: 91.03% 
Sensitivity: 90.25% 
Specificity: 91.86% 
AUC: 94.00%

Pose C3D: 3D-CNN structure
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