Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–72. doi:10.1016/S0140-6736(12)60820-4.
Article
PubMed
Google Scholar
Moore T, Hennessy EM, Myles J, Johnson SJ, Draper ES, Costeloe KL, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ. 2012;345:e7961. doi:10.1136/bmj.e7961.
Article
PubMed
PubMed Central
Google Scholar
Indredavik MS, Vik T, Heyerdahl S, Kulseng S, Fayers P, Brubakk AM. Psychiatric symptoms and disorders in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed. 2004;89(5):F445–50. doi:10.1136/adc.2003.038943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Indredavik MS, Vik T, Heyerdahl S, Kulseng S, Brubakk AM. Psychiatric symptoms in low birth weight adolescents, assessed by screening questionnaires. Eur Child Adolesc Psychiatry. 2005;14(4):226–36. doi:10.1007/s00787-005-0459-6.
Article
PubMed
Google Scholar
Lund LK, Vik T, Skranes J, Lydersen S, Brubakk AM, Indredavik MS. Low birth weight and psychiatric morbidity; stability and change between adolescence and young adulthood. Early Human Dev. 2012;88(8):623–9. doi:10.1016/j.earlhumdev.2012.01.006.
Article
Google Scholar
Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95. doi:10.1542/peds.2004-1169.
Article
PubMed
Google Scholar
Yoo JY, Mak GK, Goldowitz D. The effect of hemorrhage on the development of the postnatal mouse cerebellum. Exp Neurol. 2014;252:85–94. doi:10.1016/j.expneurol.2013.11.010.
Article
PubMed
Google Scholar
Steggerda SJ, Leijser LM, Wiggers-de Bruine FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology. 2009;252(1):190–9. doi:10.1148/radiol.2521081525.
Article
PubMed
Google Scholar
Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104. doi:10.1177/0883073809338067.
Article
PubMed
PubMed Central
Google Scholar
Limperopoulos C, Bassan H, Gauvreau K, Robertson RL Jr, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120(3):584–93. doi:10.1542/peds.2007-1041.
Article
PubMed
Google Scholar
Shakiba A. The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clinics. 2014(0). doi:10.1016/j.ncl.2014.07.008.
Katz DB, Steinmetz JE. Psychological functions of the cerebellum. Behav Cognit Neurosci Rev. 2002;1(3):229–41.
Article
Google Scholar
Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13. doi:10.1038/nrn2332.
Article
CAS
PubMed
Google Scholar
Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.
CAS
PubMed
Google Scholar
Noreika V, Falter CM, Rubia K. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia. 2013;51(2):235–66. doi:10.1016/j.neuropsychologia.2012.09.036.
Article
PubMed
Google Scholar
Ashe J, Bushara K. The olivo-cerebellar system as a neural clock. Adv Exp Med Biol. 2014;829:155–65. doi:10.1007/978-1-4939-1782-2_9.
Article
PubMed
Google Scholar
Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26(22):5990–5. doi:10.1523/jneurosci.0038-06.2006.
Article
CAS
PubMed
Google Scholar
Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524–31. doi:10.1136/jnnp.2003.018093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78. doi:10.1176/appi.neuropsych.16.3.367.
Article
PubMed
Google Scholar
Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337(1):94–112. doi:10.1002/cne.903370107.
Article
CAS
PubMed
Google Scholar
Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21(16):6283–91.
CAS
PubMed
Google Scholar
Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.
CAS
PubMed
Google Scholar
Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98. doi:10.1002/(SICI)1097-0193.
Article
CAS
PubMed
Google Scholar
Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. doi:10.1016/j.cortex.2009.11.008.
Article
PubMed
PubMed Central
Google Scholar
Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57(2):245–54.
Article
CAS
PubMed
Google Scholar
Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cerebral Cortex (New York, NY: 1991). 2014;24(3):728–36. doi:10.1093/cercor/bhs354.
Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung HY, Nosarti C, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain. 2008;131(Pt 5):1344–51. doi:10.1093/brain/awn062.
PubMed
Google Scholar
Martinussen M, Flanders DW, Fischl B, Busa E, Lohaugen GC, Skranes J et al. Segmental brain volumes and cognitive and perceptual correlates in 15-year-old adolescents with low birth weight. J Pediatrics. 2009;155(6):848–53 e1. doi:10.1016/j.jpeds.2009.06.015.
Bjuland KJ, Rimol LM, Lohaugen GC, Skranes J. Brain volumes and cognitive function in very-low-birth-weight (VLBW) young adults. Eur J Paediatric Neurol. 2014;18(5):578–90. doi:10.1016/j.ejpn.2014.04.004.
Article
Google Scholar
Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage. 2004;23(Suppl 1):S69–84. doi:10.1016/j.neuroimage.2004.07.016.
Article
PubMed
Google Scholar
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.
Article
CAS
PubMed
Google Scholar
Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH et al. Automatically parcellating the human cerebral cortex. Cerebral cortex (New York, NY: 1991). 2004;14(1):11–22.
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31(3):968–80. doi:10.1016/j.neuroimage.2006.01.021.
Article
PubMed
Google Scholar
Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage. 2011;57(1):19–21. doi:10.1016/j.neuroimage.2011.02.076.
Article
PubMed
PubMed Central
Google Scholar
Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. NeuroImage. 2010;53(4):1181–96. doi:10.1016/j.neuroimage.2010.07.020.
Article
PubMed
PubMed Central
Google Scholar
Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61(4):1402–18. doi:10.1016/j.neuroimage.2012.02.084.
Article
PubMed
PubMed Central
Google Scholar
Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage. 2013;66:249–60. doi:10.1016/j.neuroimage.2012.10.065.
Article
PubMed
Google Scholar
Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980–8. doi:10.1097/00004583-199707000-00021.
Article
CAS
PubMed
Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed, text revision ed. Washington: American Psychiatric Association; 2000.
Shaffer D, Gould M, Brasic J. A children’s global assessment scale (CGAS) (for children 4 to 16 years of age). Psychopharmacollly Bulletin. 1985;21:747–8.
Google Scholar
Achenbach TM, Rescorla L. Manual for the ASEBA school-age forms and profiles: child behavior checklist for ages 6–18, teacher’s report form, youth self-report: an integrated system of multi-informant assessment. Burlington: ASEBA; 2001.
Google Scholar
Barkley RA, Murphy KR. Attention-deficit/hyperactivity disorder: a clinical workbook. 2nd ed. New York: Guilford Press; 1998.
Google Scholar
Kaufman AS, Lichtenberger EO. Assessing adolescent and adult intelligence. 3rd ed. New York, NY: Wiley; 2005.
Google Scholar
Lydersen S, Langaas M, Bakke Ø. The exact unconditional z-pooled test for equality of two binomial probabilities: optimal choice of the berger and boos confidence coefficient. J Stat Comput Simul. 2012;82(9):1311–6.
Article
Google Scholar
Fox J, Weisberg S. An R companion to applied regression. London: Sage; 2010.
Google Scholar
Gran MG, H. S, Håberg SE, O AO. Causal inference. In: Veierød M, Lydersen S, Laake P, editors. Medical statistics in clinical and epidemiological research. Gyldendal Akademisk. 2012.
Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67(8):850–7. doi:10.1016/j.jclinepi.2014.03.012.
Article
PubMed
Google Scholar
Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.
PubMed
Google Scholar
Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50. doi:10.1542/peds.2004-2282.
Article
PubMed
Google Scholar
Messerschmidt A, Prayer D, Brugger PC, Boltshauser E, Zoder G, Sterniste W, et al. Preterm birth and disruptive cerebellar development: assessment of perinatal risk factors. Eur J Paediatric Neurol. 2008;12(6):455–60. doi:10.1016/j.ejpn.2007.11.003.
Article
Google Scholar
Bodensteiner JB, Johnsen SD. Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol. 2005;20(2):139–42.
Article
PubMed
Google Scholar
Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA. 2000;284(15):1939–47.
Article
CAS
PubMed
Google Scholar
Argyropoulou MI, Xydis V, Drougia A, Argyropoulou PI, Tzoufi M, Bassounas A, et al. MRI measurements of the pons and cerebellum in children born preterm; associations with the severity of periventricular leukomalacia and perinatal risk factors. Neuroradiology. 2003;45(10):730–4. doi:10.1007/s00234-003-1067-0.
Article
CAS
PubMed
Google Scholar
Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.
Article
CAS
PubMed
Google Scholar
de Kieviet JF, Zoetebier L, van Elburg RM, Vermeulen RJ, Oosterlaan J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev Med Child Neurol. 2012;54(4):313–23. doi:10.1111/j.1469-8749.2011.04216.x.
Article
PubMed
Google Scholar
Jaeger E, Silveira RC, Procianoy RS. Cerebellar growth in very low birth weight infants. J Perinatol. 2011;31(12):757–9. doi:10.1038/Jp.2011.20.
Article
CAS
PubMed
Google Scholar
Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol. 2005;20(1):60–4.
Article
PubMed
Google Scholar
Mercuri E, He J, Curati WL, Dubowitz LM, Cowan FM, Bydder GM. Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol. 1997;27(2):139–43. doi:10.1007/s002470050085.
Article
CAS
PubMed
Google Scholar
Rollins NK, Wen TS, Dominguez R. Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity. Pediatr Radiol. 1995;25(Suppl 1):S20–5.
PubMed
Google Scholar
Krageloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou HC. Brain lesions in preterms: origin, consequences and compensation. Acta paediatrica (Oslo, Norway: 1992). 1999;88(8):897–908.
Andersen BB, Korbo L, Pakkenberg B. A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol. 1992;326(4):549–60. doi:10.1002/cne.903260405.
Article
CAS
PubMed
Google Scholar
Manto M, Gruol DL, Schmahmann J, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer; 2013.
Google Scholar
Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61(12):1361–9. doi:10.1016/j.biopsych.2006.06.011.
Article
PubMed
Google Scholar
Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288(14):1740–8.
Article
PubMed
Google Scholar
Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naive children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry. 2009;65(7):620–4. doi:10.1016/j.biopsych.2008.11.030.
Article
PubMed
PubMed Central
Google Scholar
Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF 3rd, et al. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55. doi:10.1176/ajp.2007.164.4.647.
Article
PubMed
Google Scholar
Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.
Article
CAS
PubMed
Google Scholar
Mostofsky SH, Reiss AL, Lockhart P, Denckla MB. Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J Child Neurol. 1998;13(9):434–9.
Article
CAS
PubMed
Google Scholar
Bussing R, Grudnik J, Mason D, Wasiak M, Leonard C. ADHD and conduct disorder: an MRI study in a community sample. World J Biol Psychiatry. 2002;3(4):216–20.
Article
PubMed
Google Scholar
Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T, et al. Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2001;58(3):289–95.
Article
CAS
PubMed
Google Scholar
Hill DE, Yeo RA, Campbell RA, Hart B, Vigil J, Brooks W. Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology. 2003;17(3):496–506.
Article
PubMed
Google Scholar
Bechtel N, Kobel M, Penner IK, Klarhofer M, Scheffler K, Opwis K, et al. Decreased fractional anisotropy in the middle cerebellar peduncle in children with epilepsy and/or attention deficit/hyperactivity disorder: a preliminary study. Epilepsy Behav. 2009;15(3):294–8. doi:10.1016/j.yebeh.2009.04.005.
Article
PubMed
Google Scholar
Ashtari M, Kumra S, Bhaskar SL, Clarke T, Thaden E, Cervellione KL, et al. Attention-deficit/hyperactivity disorder: a preliminary diffusion tensor imaging study. Biol Psychiatry. 2005;57(5):448–55. doi:10.1016/j.biopsych.2004.11.047.
Article
PubMed
Google Scholar
van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan J. Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2012;36(4):1093–106. doi:10.1016/j.neubiorev.2012.01.003.
Article
PubMed
Google Scholar
Kucyi A, Hove MJ, Biederman J, Van Dijk KRA, Valera EM. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder. Hum Brain Mapp. 2015;36(9):3373–86. doi:10.1002/hbm.22850.
Article
PubMed
Google Scholar
Limperopoulos C, Chilingaryan G, Guizard N, Robertson RL, Du Plessis AJ. Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr Res. 2010;68(2):145–50. doi:10.1203/00006450-201011001-00282.
Article
PubMed
Google Scholar
Andreasen NC. Schizophrenia: the big questions. Seishin shinkeigaku zasshi = Psychiatria et neurologia Japonica. 2002;104(4):249.
Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(2):189–214.
Article
Google Scholar
Ball G, Boardman JP, Aljabar P, Pandit A, Arichi T, Merchant N, et al. The influence of preterm birth on the developing thalamocortical connectome. Cortex. 2013;49(6):1711–21. doi:10.1016/j.cortex.2012.07.006.
Article
PubMed
Google Scholar
Gündel H, O’connor M-F, Littrell L, Fort C, Lane RD. Functional neuroanatomy of grief: an FMRI study. Am J Psychiatry. 2014.
Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, et al. Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry. 1997;154(7):918–25.
Article
CAS
PubMed
Google Scholar
Liotti M, Mayberg HS, McGinnis S, Brannan SL, Jerabek P. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am J Psychiatry. 2014.
Wechsler D. Wechsler intelligence scale for children-third edition, Swedish version. Stockholm: Psykologiforlaget AB; 1999.
Google Scholar
Ricciardi J. Co-occurring psychiatric disorders in individuals with intellectual disability. In: Luiselli JK, Reed DD, DiGennaro Reed FD, editors. Handbook of crisis intervention and developmental disabilities. issues in clinical child psychology. New York: Springer; 2013. p. 213–43.
Chapter
Google Scholar
Dennis M, Francis DJ, Cirino PT, Schachar R, Barnes MA, Fletcher JM. Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc. 2009;15(3):331–43. doi:10.1017/s1355617709090481.
Article
PubMed
PubMed Central
Google Scholar
Etkin A, Gyurak A, O’Hara R. A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues Clinical Neurosci. 2013;15(4):419–29.
Google Scholar
MacCabe JH, Lambe MP, Cnattingius S, Sham PC, David AS, Reichenberg A, et al. Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. Br J Psychiatry. 2010;196(2):109–15. doi:10.1192/bjp.bp.108.060368.
Article
PubMed
Google Scholar
Bearden CE, Hoffman KM, Cannon TD. The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar disorders. 2001;3(3):106–50; discussion 51–3.
Schnack HG, van Haren NE, Brouwer RM, Evans A, Durston S, Boomsma DI et al. Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cerebral Cortex (New York, NY: 1991). 2015;25(6):1608–17. doi:10.1093/cercor/bht357.
Fewtrell MS, Kennedy K, Singhal A, Martin RM, Ness A, Hadders-Algra M, et al. How much loss to follow-up is acceptable in long-term randomised trials and prospective studies? Arch Dis Child. 2008;93(6):458–61. doi:10.1136/adc.2007.127316.
Article
PubMed
Google Scholar
Yang Z, Ye C, Bogovic JA, Carass A, Jedynak BM, Ying SH et al. Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. NeuroImage. doi:http://dx.doi.org/10.1016/j.neuroimage.2015.09.032.
Lee DK, Yoon U, Kwak K, Lee JM. Automated segmentation of cerebellum using brain mask and partial volume estimation map. Computational Math Methods Med. 2015;2015:167489. doi:10.1155/2015/167489.
Article
Google Scholar
Lund LK, Vik T, Lydersen S, Lohaugen GC, Skranes J, Brubakk AM, et al. Mental health, quality of life and social relations in young adults born with low birth weight. Health Quality Life Outcomes. 2012;10:146. doi:10.1186/1477-7525-10-146.
Article
Google Scholar
Hack M, Youngstrom EA, Cartar L, Schluchter M, Taylor HG, Flannery D, et al. Behavioral outcomes and evidence of psychopathology among very low birth weight infants at age 20 years. Pediatrics. 2004;114(4):932–40. doi:10.1542/peds.2003-1017-L.
Article
PubMed
Google Scholar
Hille ET, Dorrepaal C, Perenboom R, Gravenhorst JB, Brand R, Verloove-Vanhorick SP. Social lifestyle, risk-taking behavior, and psychopathology in young adults born very preterm or with a very low birthweight. The Journal of pediatrics. 2008;152(6):793–800,.e1–4. doi:10.1016/j.jpeds.2007.11.041.